

Continuing professional development Respiratory Critical Care

Module 1. Anatomy and development of the respiratory system including malformations

- 1. Pleura
- 2. Lungs
- 3. Bronchopulmonary segments
- 4. Trachea and bronchi
- 5. Hila
- 6. Pulmonary vasculature and lymphatic drainage
- 7. Mediastinum
- 8. Diaphragm
- 9. Development

Module 2. Immunology and defence mechanisms

- 1. Anatomical barriers including epithelial cell function
- 2. Reflex mechanisms (sneezing, cough and smooth muscle contraction)
- 3. Mucociliary clearance and fluid homeostasis

Module 3. Ventilation

- 1. Physiology of tidal breathing: active inspiration and passive expiration
- 2. Relative elastic properties of the lungs and chest wall
- 3. Lung volumes
- 4. The Rahn diagram and transpulmonary pressures

Module 4. Pulmonary circulation

- 1. Normal pulmonary vascular pressures and flows
- 2. Active hypoxic regulation of the pulmonary circulation
- 3. Non-invasive evaluation of the pulmonary circulation

Module 5. Control of breathing

- 1. Control systems
- 2. Peripheral chemoreceptors
- 3. Central chemoreceptors
- 4. Neural organisation in the brain stem for control of respiration
- 5. Testing the control system
- 6. Ventilatory responses to CO₂
- 7. The hypoxic ventilatory response
- 8. Interaction between hypoxic and hypercapnic responses
- 9. Disturbances in the control of breathing
- 10. Control of breathing in pulmonary diseases
- 11. Type 1 respiratory failure
- 12. Type 2 respiratory failure
- 13. Respiratory stimulants

Module 6. Respiratory mechanics

- 1. Airway resistance
- 2. Lung and chest wall compliance
- 3. Measurement of respiratory mechanics in mechanical ventilation
- 4. Respiratory muscle strength: maximum inspiratory pressure, maximum expiratory pressure and sniff nasal inspiratory pressure, Magnetic twitch pressure

Module 7. Gas exchange

- 1. Transfer factor of the lung for carbon monoxide (TLCO)
- 2. Definition

- 3. Technique
- 4. Calculation of TLCO and measurement of the carbon monoxide transfer coefficient (KCO)
- 5. Implications of KCO \times VA = TLCO
- 6. Transfer factor of the lung for nitric oxide (TLNO) and TLCO/TLNO measurement

Module 8. Arterial blood gas (ABG) and acid-base status assessment

- 1. ABG:
 - 1.1. Step 1: evaluation of the utility of ABG, capillary blood gas and venous blood gas
 - 1.2. Step 2: diagnosis of A-B disorders: Henderson-Hasselbalch equation and the relationship between partial pressure of oxygen (PO₂), partial pressure of carbon dioxide (PCO₂) and pH
 - 1.3. Step 3: more on A-B disorders: importance of the D(A-a) difference, fraction of inspired oxygen (FiO₂), the alveolar gas equation and measuring oxygen shunts
- 2. ABG analysis
 - 1.1. Principles of measured and calculated ABG data
 - 1.2. Physiology and pathophysiology of oxygenation, carbon dioxide removal and acidbase homeostasis
 - 1.3. Assessment and appropriate use of ABG data during the diagnostic process
 - 1.4. Calculation of secondary parameters such as the A-aO₂ gradient, PaO₂/FiO₂ ratio and anion gap
 - 1.5. Selection of appropriate treatment to correct ABG abnormalities

Module 9. Lung function tests

- 1. Spirometry interpretation:
 - 1.1. Interpret the flow-volume loop (by shape)
 - 1.2. Pulmonary function testing to assess respiratory mechanics and gas exchange, including spirometry, flow-volume studies, lung volumes and diffusing capacity
- 2. Measurement principles of flow spirometry, body plethysmography, gas dilution methods and diffusion capacity including all measured (primary) and calculated (secondary) parameters

Module 10. Symptoms

- 1. Sensation of dyspnoea
 - 1.1. Pathophysiology of dyspnoea sensation
 - 1.2. Quantification of dyspnoea sensation
 - 1.3. Treatment for dyspnoea sensation
- 2. Thoracic pain/tightness
- 3. Cough and sputum
- 4. Systemic symptoms

Module 11. Signs

- 1. Airway secretions
- 2. Effort of breathing
- 3. Haemodynamic assessment
- 4. Systemic signs

Module 12. Diagnostic approach

- 1. Differential diagnosis of acute hypercapnic respiratory failure
- 2. Differential diagnosis of acute hypoxic respiratory failure

Module 13. Bronchoscopy

- 1. Different approaches to flexible bronchoscopy in spontaneously breathing patients and those on high-flow nasal therapy, non-invasive ventilation (NIV) and invasive mechanical ventilation (IMV)
- 2. Bronchoscopy

- 2.1. Goals of bronchoscopy (therapeutic/diagnostic)
- 2.2. Effects and side effects (risks and benefits) of bronchoscopy in secretion management (*e.g.* risk of atelectasis)
- 2.3. Indications for NIV during bronchoscopy
- 2.4. Monitoring requirements for the procedure
- 2.5. Appropriate setting for bronchoscopy according to the patient's condition
- 2.6. Patient consent
- 2.7. Selection and application of appropriate topical and systemic medications for the procedure
- 2.8. Selection and mounting of appropriate interface that allows bronchoscopy during NIV
- 2.9. Selection and applying the appropriate ventilator settings to achieve optimal ventilator support and minimise the side effects of bronchoscopy
- 2.10. Set up of the monitoring equipment for bronchoscopy
- 2.11. Performance of bronchoscopy
- 3. Diagnostic bronchoscopy including airway examination and bronchoalveolar lavage
 - 3.1. Indications, contraindications and risks of bronchoscopy and lavage
 - 3.2. Principles of patient preparation for bronchoscopy and evaluation prior to bronchoscopy
 - 3.3. Principles of sedation management during bronchoscopy
 - 3.4. Airway anatomy
 - 3.5. Bronchoscopy technique including biopsy and lavage equipment
 - 3.6. Different routes to perform bronchoscopy (artificial airway, oral cavity, nasal cavity and during NIV)
 - 3.7. Methods to treat endobronchial bleeding during bronchoscopy including the limitations of these measures
 - 3.8. Management of sedation during bronchoscopy
 - 3.9. Bronchoscopy (pass the upper airway and locate all accessible segmental ostia)
 - 3.10. Mucosal biopsy
 - 3.11. Bronchoalveolar lavage
 - 3.12. Therapeutic bronchoscopy (through an artificial airway) to remove secretions
 - 3.13. Indications, contraindications and risks of therapeutic bronchoscopy *via* an artificial airway
 - 3.14. Ventilator management when bronchoscopy is performed during ventilation
 - 3.15. Techniques to supply oxygen when bronchoscopy is performed during spontaneous breathing through an artificial airway
 - 3.16. Therapeutic bronchoscopy through an artificial airway
- 4. Foreign body airway aspiration
 - 4.1. Pathophysiology and complications of gross and silent aspiration
 - 4.2. Indications for flexible or rigid bronchoscopy
 - 4.3. Performance of flexible bronchoscopy and recognition of indications for rigid bronchoscopy

Module 14. Thoracentesis

- 1. Diagnostic and therapeutic thoracentesis
 - 1.1. Indications, contraindications and risks of thoracentesis
 - 1.2. Anatomic sites for thoracentesis
 - 1.3. Different thoracentesis systems (closed *versus* open, cannula, Seldinger technique, *etc.*)
 - 1.4. Performance of thoracentesis

- 1.5. Recognition of appropriate procedure-related complications
- 1.6. Appropriate management of complications with support from different specialties
- 1.7. Chest trauma (e.g. flail chest, pulmonary contusion and rib fractures)
- 1.8. Pathophysiology of the clinical signs of haemothorax/pneumothorax, cardiac contusion and aortic injuries
- 1.9. Indications for chest tube drainage/needle thoracentesis in cases with chest trauma
- 1.10. Principles of pain evaluation and its impact on cough
- 1.11. Indications for mechanical ventilation
- 1.12. Diagnostic work-up in cases with suspected chest trauma
- 1.13. Interpretation of imaging in cases with chest trauma
- 1.14. Insertion of a chest tube in cases with tension pneumothorax or haemothorax
- 1.15. Treatment of pain to avoid sputum retention
- 1.16. Recognition of empyema
- 1.17. Principles of empyema treatment (antibiotics, thoracic drainage and thoracic surgery)
- 1.18. Thoracentesis in cases with empyema
- 1.19. Interpretation of laboratory results of thoracentesis in cases with empyema
- 1.20. Initiation of appropriate antibiotic therapy in cases with empyema
- 2. Performing thoracentesis in cases with pleural effusion
- 3. Thoracentesis in cases with suspected haemothorax

Module 15. Basic interpretation of a chest radiograph

- 1. Radiological correlates of chest organs and bony chest structures
- 2. Describing radiological findings of a chest radiograph
- 3. Recognition of abnormal results and formulation of a diagnosis
- 4. Changes in chest X-rays during mechanical ventilation, recruitment manoeuvres and positive pressure ventilation
- 5. Position of central venous lines, a endotracheal tube and a nasogastric tube
- 6. Risks associated with chest radiography (irradiation)

Module 16. Thoracic ultrasound

- 1. Lung ultrasound for differential diagnosis of acute respiratory failure
- 2. Lung ultrasound for monitoring treatment effects
- 3. Ultrasound for diaphragm assessment
- 4. Ultrasound for haemodynamic assessment

Module 17. Computed tomography scan

- 1. Identify causes of acute respiratory failure (ARF)
- 2. Effects of ventilator settings (recruitments) on atelectasis
- 3. Risks associated with CT in (ventilated) patient (irradiation, transport)

Module 18. Basic microbiological methods

- 1. Culture, PCR results and ELISA
- 2. Choose and obtain the appropriate respiratory sample

Module 19. Inhaled drug therapy

- 1. Inhalation therapies and humidification
- 2. Principles and the physiologic and anatomic basis of airway conditioning
- 3. Principles of inhaled drug therapy in invasively and non-invasively mechanically ventilated patients
- 4. Indications, limitations and side effects

Module 20. Respiratory physiotherapy

1. Basic principles of physiotherapy

- 2. Physiological rationale and technical issues of non-invasive tools for secretion management and cough assist in spontaneously breathing and non-invasively supported patients
- 3. Use of devices to train inspiratory muscles
- 4. Positive expiratory pressure therapy: rationale and devices

Module 21. Palliative care

- 1. End-of-life relief of dyspnoea by:
 - 1.1. Drug administration
 - 1.2. NIV
 - 1.3. High-flow nasal oxygen (HFNO)
 - 1.4. Discuss end-of-life decisions with patients and their relatives

Module 22. Oxygen therapy

- 1. Oxygen transport and utilisation
 - 1.1. Mechanisms involved in oxygen transport and tissue oxygenation
 - 1.2. Clinical conditions that compromise oxygen transport and utilisation
 - 1.3. Diagnostic and therapeutic strategies aimed at improving oxygen transport and utilisation
 - 1.4. Physiology oxygen delivery (*i.e.* cardiac output × arterial oxygen content)
 - 1.5. Early recognition and treatment of generalised or local hypoxia/hypoxaemia
 - 1.6. Differentiation between oxygen saturation (SaO₂) and pO₂ in blood gas analysis (BGA)
 - 1.7. Proactive attitude in early recognition and management
- 2. Practical skills: modes and principles of oxygen supplementation
 - 2.1. Oxygen uptake and delivery
 - 2.2. Indications and contraindications for oxygen therapy
 - 2.3. Gas pressure and liquid oxygen systems as well as oxygen blenders
 - 2.4. Different probe systems used to administer oxygen during spontaneous breathing, including their impact on FiO₂
 - 2.5. Oxygen humidification
 - 2.6. Appropriate selection of an oxygen system, flow rate and FiO₂
 - 2.7. Appropriate selection of tests to monitor oxygen supplementation
 - 2.8. Selection of appropriate patients for HFNO, excluding patients who require (non)invasive ventilation or low-flow oxygen

Module 23. Noninvasive mechanical ventilation (NIV)

- 1. Indications for NIV
- 2. Contraindications for NIV
- 3. Side effects and complications of NIV
- 4. Continuous positive airway pressure
- 5. Failure of NIV
- 6. Humidification during NIV
- 7. Circuits
- 8. Synchronies/dyssynchronies during NIV
- 9. Ventilator modes and parameters
- 10. Technical maintenance
- 11. Withdrawal of NIV
- 12. Interfaces for NIV

Module 24. General principles of IMV

- 1. Principles of IVM in the general intensive care unit (ICU) population
- 2. Principles of IMV in ICU patients with specific pulmonary conditions (*e.g.* acute respiratory distress syndrome (ARDS))

- 3. Modes of ventilation and their indications and principles of intelligent modes of ventilation.
- 4. Effects of positive airway pressure on gas exchange, respiratory mechanics and haemodynamics
- 5. Ventilation modes (e.g. assist *versus* assisted modes, and auto-modes)
- 6. Interpretation of flow and pressure curves
- 7. Types of humidification systems and their indications
- 8. Indications for nebulisation of bronchodilators and mucolytic drugs
- 9. Nebulisation systems and their advantages and disadvantages
- 10. Adjustment of ventilator settings to:
 - 10.1. Optimise gas exchange according to BGA
 - 10.2. Prevent haemodynamic compromise
 - 10.3. Minimise the risks of ventilator-induced lung injury (VILI)
- 11. Titrate positive end expiratory pressure (PEEP) according to different methods
- 12. Initiate and set the right level of PEEP
- 13. Diagnosis and recognition of barotrauma
- 14. Management of barotrauma (pneumothorax)
- 15. Effectively communicate with patients about the risks and benefits of invasive ventilation *versus* NIV
- 16. General principles of monitoring
- 17. Pressure and volumes (applied)
- 18. Hazards of mechanical ventilation
- 19. Patient-ventilator interaction
- 20. Rescue
- 21. IMV in specific patient groups
- 22. Weaning
- 23. Long-term complications

Module 25. Chest tube insertion

- 1. Chest tube insertion, maintenance of the tube and drainage systems and insertion of a decompression needle for tension pneumothorax
- 2. Indications, contraindications and risks of chest tube insertion and needle decompression
- 3. Anatomic sites for tube placement or needle insertion
- 4. Different thoracentesis systems (open preparation *versus* trocar tubes)
- 5. Drainage and suction systems
- 6. Perform chest tube insertion and needle decompression
- 7. Manage complications as appropriate with support from different specialties

Module 26. Respiratory emergencies

- 1. Evaluation, differential diagnosis, immediate management steps, first-line treatment and specific conditions
- 2. Diagnosis and first-line treatment of:
 - 2.1. Massive pulmonary bleeding
 - 2.2. Massive pulmonary embolism
 - 2.3. Acute pulmonary oedema
 - 2.4. Acute respiratory distress syndrome
 - 2.5. Tension pneumothorax
 - 2.6. Tracheal stenosis

Module 27. Asthma

- 1. Pathophysiology of asthma
- 2. Status asthmaticus

- 3. Principles of recognition of status asthmaticus
- 4. Indications for oxygen therapy, NIV and intubation
- 5. Pharmacology and side effects of anti-asthmatic drugs
- 6. Principles of delivery of and response to aerosol therapy
- 7. Possible complications of status asthmaticus (*e.g.* pneumothorax and pneumomediastinum) and their management
- 8. Indications for non-pharmacological treatment (*e.g.* oxygen therapy and mechanical ventilation)
- 9. Provision of outpatient and inpatient care as well as emergency and ICU treatment
- 10. Translation of national and international management recommendations for status asthmaticus to individualised management
- 11. Recognition and management of patients at risk of life-threatening asthma requiring intubation
- 12. Mechanical ventilation of status asthmaticus patients
- 13. Knowledge of emergency therapeutic strategies

Module 28. Infections in an immunocompromised host

- 1. Hospital-acquired and opportunistic infections in critically ill patients
- 2. Most frequent infections acquired in the ICU, their predisposing factors including immunosuppression, their diagnostic criteria, the most frequent etiologic pathogens and recommended empiric treatment for each infection
- 3. Detection and diagnosis of these patients
- 4. Implementation of appropriate diagnostic methods
- 5. Appropriate selection of empiric treatment
- 6. Most frequent support measures in critically ill and immunosuppressed patients, including haemotherapy, antimicrobial treatment and life support measures such as mechanical ventilation, vasoactive drugs, renal replacement therapy and immunostimulation
- 7. Establishment of indications for each support measure and selection of the most appropriate measure in each clinical condition

Module 29. Aspiration pneumonitis

- 1. Detection and diagnosis of these patients
- 2. Implementation of appropriate diagnostic methods
- 3. Selection of empiric treatment

Module 30. Lung cancer (including paraneoplastic syndromes)

- 1. Identify immunotherapy and diffuse metastasis as causes of respiratory failure
- 2. Discuss the appropriateness of mechanical ventilation for patients with lung cancer during the diagnostic process

Module 31. Sleep-disordered breathing

- 1. Physiology and pathophysiology of sleep apnoea syndromes relevant to ARF
- 2. Diagnosis and screening of obstructive sleep apnoea, upper airway obstruction and hypoventilation
- 3. Interpretation of blood gases and other tests for sleep-disordered breathing
- 4. Recognition of obesity as a cause of weaning failure in obese patients

Module 32. ARF and chronic respiratory failure

- 1. ARF
 - 1.1. Physiology and pathophysiology of ARF
 - 1.2. Respiratory pump function and dysfunction
 - 1.3. BGA
 - 1.4. Difference between hypoxia and hypoxaemia
 - 1.5. Imaging (e.g. chest X-ray)

- 1.6. National and international guidelines for treatment of ARF
- 1.7. Evaluation, performance, interpretation and reporting of BGA, O₂ saturation, transcutaneous CO₂ measurement, chest X-ray (imaging) and lung/chest wall mechanics
- 2. Hypoxemic respiratory failure including ARDS
 - 2.1. Causes of hypoxemic ARF
 - 2.2. Definition and classification of ARDS
 - 2.3. Ventilator and tube-associated complications
 - 2.4. Intubation-associated pneumonia (IAP)
 - 2.5. Protective mechanical ventilation and VILI
 - 2.6. Identification and management of hypoxemic ARF
 - 2.7. Indications for NIV in patients with hypoxemic ARF
 - 2.8. Risk assessment and management of NIV failure and indications for intubation
 - 2.9. Intubation and IMV
- 3. Acute and chronic hypercapnic respiratory failure
 - 3.1. Causes of respiratory failure
 - 3.2. Principles of interpretation of BGA
 - 3.3. National and international guidelines for treatment of acute and chronic hypercapnic respiratory failure
 - 3.4. Indications for additional O₂ treatment
 - 3.5. Indications for long-term (home) mechanical ventilation
 - 3.6. Management of patients with prolonged weaning
 - 3.7. Non-IVM
 - 3.8. Care for patients that are highly dependent on mechanical ventilation, *e.g.* those with a tracheostomy
- 4. Pleural diseases in patients with severe respiratory failure
 - 4.1. Pathophysiology of restrictive thoracic/pleural diseases that cause severe respiratory failure
 - 4.2. Various types of chest tubes and insertion techniques
 - 4.3. Recognition of pleural diseases as a cause of severe respiratory failure
 - 4.4. Performance of ultrasound examination of the pleural space
 - 4.5. Interpretation of pleural pathology on chest X-rays
 - 4.6. Chest tube insertion: technical issues must be considered to drain located effusions in some cases with organising parapneumonic pleural effusions
 - 4.7. Interpretation of laboratory findings in patients with pleural effusion

Module 33. Interstitial lung disease (ILD)

- 1. Identify acute ILD as a cause of ARF
- 2. Differential diagnosis and optimal testing
- 3. Choose the optimal treatment
- 4. Prognostication of the identified ILD
- 5. Hypersensitivity pneumonitis
- 6. Sarcoidosis
- 7. Idiopathic interstitial pneumonias
- 8. Cryptogenic organising pneumonia of unknown ethology/bronchiolitis obliterans organising pneumonia
- 9. Connective tissue disease related to ILD
- 10. Langerhans cell histiocytosis
- 11. Amyloidosis
- 12. Lymphangioleiomyomatosis
- 13. Pulmonary alveolar proteinosis

- 14. Drug-induced disease
- 15. Radiation-induced disease
- 16. Non-asthmatic eosinophilic bronchitis
- 17. Acute and chronic eosinophilic pneumonia
- 18. Hypereosinophilic syndrome
- 19. Identification of exacerbation of idiopathic pulmonary fibrosis as a cause of ARF and provide differential diagnosis as well as optimal treatment

Module 34. Thromboembolic disease

- 1. Conditions/diseases associated with an increased risk of thromboembolic disease
- 2. Adverse effects associated with anticoagulation therapy
- 3. Interpretation of coagulation laboratory tests
- 4. Drug indications and their appropriate dosages

Module 35. Pulmonary hypertension and cor pulmonale

- 1. Pathophysiology of pulmonary hypertension
- 2. Pharmacological treatment of pulmonary hypertension according to the underlying disease
- 3. Diagnosis of pulmonary hypertension and cor pulmonale
- 4. Insertion of pulmonary artery catheter and interpretation of wave-forms.
- 5. Translating national and international management guidelines to an individual patient
- 6. Appropriate decisions for referral and transfer to specialised referral centres
- 7. Prognosis of patients with pulmonary hypertension in acute care settings

Module 36. Vasculitis and diffuse pulmonary haemorrhage

- 1. Differential diagnoses, diagnostic steps and therapeutic options for pulmonary haemorrhage and haemoptysis
- 2. Triage by severity
- 3. Localisation of haemorrhage by bronchoscopy
- 4. Performance of bronchoscopic interventions
- 5. Initiation of ventilatory assistance
- 6. Recognition of the technical limitations of bronchoscopic interventions and immediate referral of patients to the appropriate specialty

Module 37. Arteriovenous (AV) malformation

- 1. Symptoms of AV malformation
- 2. Diseases associated with AV malformation
- 3. Diagnostic strategies when AV malformation is suspected
- 4. Therapeutic interventions

Module 38. Chest wall deformities

1. Identify chest wall abnormalities as a cause of restrictive lung disease, respiratory failure and weaning failure

Module 39. Neuromuscular diseases that cause respiratory failure

- 1. Neuromuscular conditions associated with respiratory muscle weakness
- 2. Symptoms and signs of nocturnal hypoventilation and the probability of respiratory failure
- 3. Role of NIV *versus* invasive ventilation and cough augmentation (cough assist) techniques
- 4. Assessment of respiratory muscle strength (e.g. vital capacity)
- 5. Assessment of non-invasive respiratory muscle strength (*e.g.* mouth pressures and sniff inspiratory pressure)
- 6. Measurement of cough peak flow
- 7. Use of NIV
- 8. Clinical assessment of bulbar function

- 9. Causes, assessment and prognosis of coma
- 10. Principles of the assessment of coma severity (i.e. Glasgow coma scale)
- 11. Clinical assessment of coma
- 12. Differential diagnosis of coma
- 13. Indications for airway protection and mechanical ventilation
- 14. Guillain-Barré syndrome
 - 14.1. Causes, subtypes, pathophysiology and natural history
 - 14.2. Diagnostic methods and treatments (plasmapheresis and immunoglobulin)
 - 14.3. Amyotrophic lateral sclerosis (ALS)
 - 14.4. Different presentations of the motor neuron disease ALS: types (bulbar/non-bulbar), diagnosis (electromyography and nerve conduction studies) and natural history
 - 14.5. Role of riluzole and symptom palliation
 - 14.6. Respiratory muscle strength and bulbar function assessment
 - 14.7. Careful handling of symptom palliation and discussion of advance directives

15. Myasthenia gravis

- 15.1. Pathophysiology of acquired myasthenia and congenital variants, diagnostic methods and therapies including anticholinesterases
- 15.2. Assessment of respiratory muscle strength
- 15.3. Myopathies and muscular dystrophies (Duchenne, etc.)
- 15.4. Understanding the classification of common myopathies (*e.g.* nemaline, Pompe disease and myotubular), muscular dystrophies (Duchenne and limb girdle) and neuropathies
- 15.5. Natural history of disorders such as cardiomyopathy in some conditions and the likelihood of respiratory failure
- 15.6. Assessment of respiratory muscle strength
- 15.7. Performance of sleep studies and NIV
- 15.8. Effective communication with patients and their families
- 15.9. Establish effective interactions with the multidisciplinary team of health professionals
- 16. Postoperative phrenic nerve dysfunction
 - 16.1. Types of phrenic nerve dysfunction (nerve transection and paresis)
 - 16.2. Predisposing surgical procedures
 - 16.3. Natural history and clinical features
 - 16.4. Assessment of respiratory muscle strength
 - 16.5. Referral for phrenic nerve conduction studies
- 17. Principles of sedation
 - 17.1. Diagnostic and therapeutic procedures for sedation and analgesia
 - 17.2. Pharmacological basis of sedative agents
 - 17.3. Indications for sedation and analgesia
 - 17.4. Scores and scales for assessment of sedation in conscious and unconscious patients
 - 17.5. Sedation and pain management including treatment of delirium and anxiety in critically ill patients using both pharmacologic and non-pharmacologic methods
 - 17.6. Use of sedative drugs and reversal drugs

Module 40. Diaphragmatic disorders

- 1. Identify diaphragm weakness as a cause of acute respiratory failure and weaning failure
- 2. Differential diagnosis of diaphragm weakness
- 3. Therapeutic options for diaphragm weakness

- 4. Pathophysiology of critical illness associated respiratory muscle weakness
- 5. Prevention of critical illness associated respiratory muscle weakness

Module 41. Pleural effusion

- 1. Pathophysiology of pleural effusions (exudates *versus* transudate)
- 2. Differential diagnosis of pleural effusion
- 3. Laboratory diagnostic tests for pleural effusion
- 4. Principles of therapy for pleural effusion (diuretics and thoracic drainage)
- 5. Various drainage devices for use as chest tubes
- 6. Translating national and international guidelines for diagnosis and treatment of pleural effusion to individualised management
- 7. Performing ultrasound of the pleural space to establish the diagnosis of pleural effusion
- 8. Performing thoracentesis in patients with pleural effusion
- 9. Inserting a drainage tube

Module 42. Pneumothorax

- 1. Pathophysiology of pneumothorax
- 2. Diagnosis and treatment of pneumothorax
- 3. Recognition of pneumothorax using imaging techniques
- 4. Treatment of pneumothorax according to national and international guidelines

Module 43. Cardiac disease

- 1. Differentiate between cardiac and pulmonary disease as a cause of ARF
- 2. Describe the differential diagnosis of cardiac causes of ARF
- 3. Basic principles of invasive cardiovascular monitoring (e.g. pulmonary artery catheter)
- 4. Cardiovascular effect of positive pressure ventilation

Module 44. Obesity

- 1. Sleep-disordered breathing
 - 1.1. Physiology and pathophysiology of sleep relevant to ARF
 - 1.2. Diagnosis and screening of obstructive sleep apnoea, upper airway obstruction and hypoventilation
 - 1.3. Interpretation of blood gases and other tests for sleep-disordered breathing
 - 1.4. Recognition of obesity as a cause of weaning failure in obese patients
- 2. Management of obese patients
 - 2.1. Pathophysiologic effects of morbid obesity on the respiratory system (upper airways, respiratory mechanics and central respiratory drive)
 - 2.2. Principles of drug dosing in morbidly obese patients
 - 2.3. Recognition of obesity as a reason for respiratory impairment
 - 2.4. Interpretation of BGA and polysomnography results
 - 2.5. Initiation of non-invasive respiratory treatment
 - 2.6. Initiation of therapy in obese patients
 - 2.7. Associated respiratory problems

Module 45. Connective tissue diseases

- 1. Identify acute ILD as a cause of ARF
- 2. Differential diagnosis and optimal testing
- 3. Choose the optimal treatment
- 4. Prognostication of the identified ILD

Module 46. Acute inhalation injuries and their possible sequelae

- 1. Identify smoke inhalation and burns as causes of respiratory failure
- 2. Assessment of the degree of severity of pulmonary involvement
- 3. Optimal treatment of inhalation injury, including systemic effects

Module 47. ILD caused by dusts of biologic origin (including extrinsic allergic alveolitis)

- 1. Identify acute ILD as a cause of ARF
- 2. Differential diagnosis and optimal testing
- 3. Choose the optimal treatment
- 4. Prognostication of the identified ILD

Module 48. Big data in the ICU

- 1. Integration of physiological and biological data in the ICU
- 2. Automated interpretation of big data in the ICU